Carbon Nanotube Cellulose Nanocomposite

University of Jyväskylä 7.6. 2010 Pasi Moilanen Nanotechnology clusters programme

Carbon nanotubes

- Carbon nanotubes have many unique properties, their strength and conductivity are phenomenal.
- Also the shape of the carbon nanotubes suites well in applications where conductivity is needed. Thus their percolation threshold is much lower than for example carbon black's.
- Problem is that carbon nanotubes as such are almost impossible to harness for use in macroscopic applications
- One solution is cellulose, nature's most abundant polymer. Cellulose offers versatile and cheap matrix for carbon nanotubes.

Carbon nanotube cellulose nanocomposite

- Not just two solid materials mixed together
- Two materials interact at molecular level

Preparation of composite

 Even though there is great deal of variables, the basic procedure is simple

Preparation of composite

- Carbon nanotubes can be modified as well as cellulose can be one of its many derivatives
- Solvent can be selected accordingly, in our studies water is most often used
- Preliminary mixing can be made dry or wet, in this step bigger agglomerates are broken for example in mortar.
- Energy in our case is sonication, extruders could also be used

Preparation, equipment

Carbon nanotube cellulose composite

SEM image of CNT-cellulose composite, 250 x magnification.

Carbon nanotube cellulose composite

Carbon nanotube cellulose nanocomposite

SEM image of CNT-cellulose gel nanocomposite, 250 x magnification.

Cellulose gel is provided by mZymes Ltd.

Carbon nanotube cellulose nanocomposite

SEM image of CNT-cellulose gel nanocomposite, 100 000 x magnification.

Conductivity of CNTcellulose composite

 Resistivities of composite as a function of CNT mass percentage

Applications

- Is it possible to introduce some of the properties of carbon nanotubes to cellulose?
- Electric conductance? Yes
- More strength to paper? Not so far

POTENTIAL PRODUCTS

do the white

Electric Storage

Power density (W/kg)

Supercapacitor

- One of the most promising areas of research. * Capacitance of capacitor $C = \epsilon_r \frac{A}{d}$
- CNT's have very large area, cellulose helps in dispersion and thus in reaching higher capacitances.

Capacitor when potential is not applied

Capacitor when potential is applied

Supercapacitor

Supercapacitor

- The best measured specific capacitance so far is about 1000 F/g
- As we are using water based electrolyte, voltage is limited to bit over 1V

EMI-shielding

Electromagnetic radiation

Ferrite tape (50 µm)

Paper

With A Martin & Car Park To - St.

-					
	Sample nr	Supplier	Shielding Effectiveness @1.5GHz	Surface Resistanse (Ω/cm²)	Volume resistanse (Ω)
	1	nEMCEL	25.5 dB	22	60
	2	Competitor A	15.7dB	173	∞
	3	Competitor B	9.1dB	1.1k	Ø
	4	nEMCEL	CNT ink; 1 layer (cellulose substrate)	0.56dB	11000
	5	nEMCEL	CNT ink; 2 layers (cellulose substrate)	2.33dB	1200
	6	nEMCEL	CNT ink; 4 layers (cellulose substrate)	7.09dB	300

3.24

da an

Future challenges

-Larger scale production

-Optimization (goal at least 30dB) and installation of EMI-shields

-Partners for further research and applications

Thank you for listening!

 I would like to thank professor Jorma Virtanen, Elja Kallberg, nEMCel and MZYMES. Also I would like to thank people at Nanotechnology clusters programme, early days Dr. Petri Nyberg, and recently Dr. Mauno Harju.

